
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC24 2001 Apr 04

74LVC1G79

FEATURES

- Wide supply voltage range from 1.65 to 5.5 V
- High noise immunity
- Complies with JEDEC standard:
- JESD8-7 (1.65 to 1.95 V)
- JESD8-5 (2.3 to 2.7 V)
- JESD8B/JESD36 (2.7 to 3.6 V).
- ±24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- Latch-up performance ≤250 mA
- Direct interface with TTL levels
- Inputs accept voltages up to 5 V
- SOT353 package.

DESCRIPTION

The 74LVC1G79 is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

Inputs can be driven from either 3.3 or 5 V devices. This feature allows the use of this device in a mixed 3.3 and 5 V environment.

This device is fully specified for partial power-down applications using I_{off} . The I_{off} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

The 74LVC1G79 provides a single positive-edge triggered D-type flip-flop.

Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D input must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f \le 2.5 \text{ ns.}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	propagation delay CP to Q	V_{CC} = 1.8 V; C _L = 30 pF; R _L = 1 k Ω	3.6	ns
		V_{CC} = 2.5 V; C_L = 30 pF; R_L = 500 Ω	2.3	ns
		V_{CC} = 3.3 V; C_L = 50 pF; R_L = 500 Ω	2.2	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 50 \text{ pF}; \text{ R}_{L} = 500 \Omega$	1.7	ns
CI	input capacitance		5	pF
C _{PD}	power dissipation capacitance per buffer	V _{CC} = 3.3 V; note 1	17	pF

Note

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in Volts.

74LVC1G79

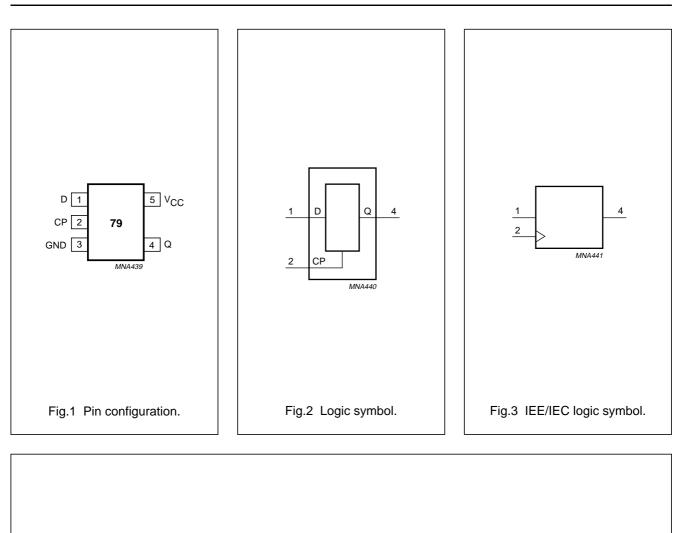
FUNCTION TABLE

See note 1.

INF	OUTPUT	
СР	D	Q
<u>↑</u>	L	L
<u>↑</u>	н	Н
L	Х	q

Note

- 1. H = HIGH voltage level;
 - L = LOW voltage level;
 - \uparrow = LOW-to-HIGH CP transition;
 - X = don't care;


q = lower case indicates the state of referenced input, one set-up time prior to the LOW-to-HIGH CP transition.

ORDERING INFORMATION

	PACKAGE						
TYPE NUMBER	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE	MARKING	
74LVC1G79GW	–40 to +85 °C	5	SC-88A	plastic	SOT353	VP	

PINNING

PIN	SYMBOL	DESCRIPTION
1	D	data input D
2	СР	clock pulse input CP
3	GND	ground (0 V)
4	Q	data output Q
5	V _{CC}	supply voltage

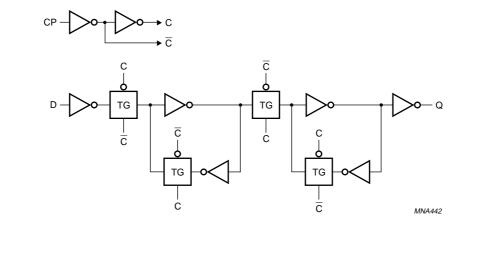


Fig.4 Logic diagram.

74LVC1G79

74LVC1G79

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	active mode	0	V _{CC}	V
		Power-down mode; $V_{CC} = 0 V$	0	5.5	V
T _{amb}	operating ambient temperature		-40	+85	°C
t _r , t _f	input rise and fall times	V _{CC} = 1.65 to 2.7 V	0	20	ns/V
		V _{CC} = 2.7 to 5.5 V	0	10	ns/V

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input diode current	V _I < 0	-	-50	mA
VI	input voltage	note 1	-0.5	+6.5	V
I _{ОК}	output diode current	$V_{\rm O} > V_{\rm CC}$ or $V_{\rm O} < 0$	-	±50	mA
Vo	output voltage	active mode; notes 1 and 2	-0.5	V _{CC} + 0.5	V
		Power-down mode; notes 1 and 2	-0.5	+6.5	V
lo	output source or sink current	$V_{O} = 0$ to V_{CC}	-	±50	mA
I _{CC} , I _{GND}	V _{CC} or GND current		-	±100	mA
T _{stg}	storage temperature		-65	+150	°C
P _D	power dissipation per package	for temperature range from -40 to +85 °C; note 3	-	200	mW

Notes

- 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 2. When V_{CC} is powered-down to 0 V, the output voltage can be 5.5 V in normal operation.
- 3. Above 55 °C the value of P_D derates linearly with 2.5 mW/K.

74LVC1G79

DC CHARACTERISTICS

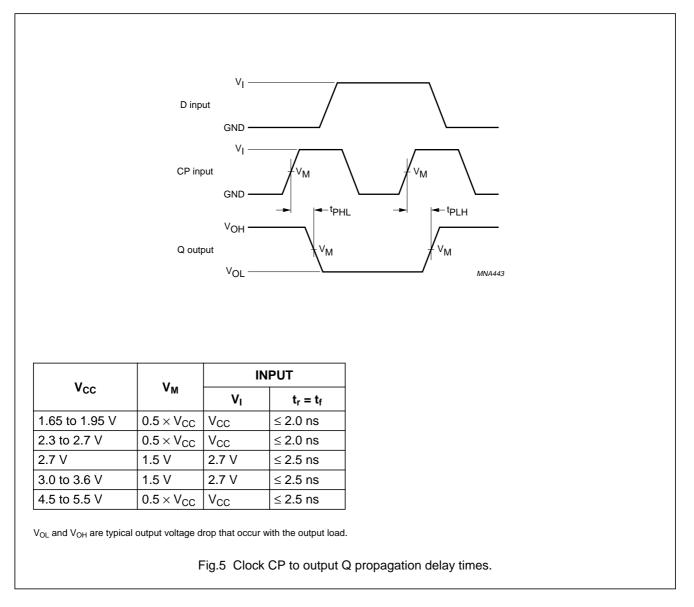
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

		TEST CONDITION	NS	T _{amb} (°C)			
SYMBOL	PARAMETER	OTUED	V 00	-40 to +85			
		OTHER	V _{CC} (V)	MIN.	TYP. ⁽¹⁾	MAX.	1
VIH	HIGH-level input		1.65 to 1.95	$0.65 \times V_{CC}$	-	-	V
	voltage		2.3 to 2.7	1.7	-	-	V
			2.7 to 3.6	2.0	-	-	V
			4.5 to 5.5	$0.7 \times V_{CC}$	-	-	V
V _{IL}	LOW-level input		1.65 to 1.95	-	-	$0.35 \times V_{CC}$	V
	voltage		2.3 to 2.7	-	-	0.7	V
			2.7 to 3.6	-	_	0.8	V
			4.5 to 5.5	_	_	$0.3 \times V_{CC}$	V
V _{OL}	LOW-level output	$V_{I} = V_{IH}$ or V_{IL} ; $I_{O} = 100 \ \mu A$	1.65 to 5.5	-	-	0.1	V
-	voltage	$V_{I} = V_{IH}$ or V_{IL} ; $I_{O} = 4 \text{ mA}$	1.65	-	_	0.45	V
		$V_{I} = V_{IH}$ or V_{IL} ; $I_{O} = 8 \text{ mA}$	2.3	_	_	0.3	V
		$V_{I} = V_{IH}$ or V_{IL} ; $I_{O} = 12 \text{ mA}$	2.7	_	_	0.4	V
		$V_{I} = V_{IH}$ or V_{IL} ; $I_{O} = 24 \text{ mA}$	3.0	-	_	0.55	V
		$V_{I} = V_{IH}$ or V_{IL} ; $I_{O} = 32 \text{ mA}$	4.5	_	_	0.55	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL} ; $I_O = -100 \ \mu A$	1.65 to 5.5	V _{CC} – 0.1	_	-	V
		$V_{I} = V_{IH}$ or V_{IL} ; $I_{O} = -4 \text{ mA}$	1.65	1.2	_	-	V
		$V_{I} = V_{IH}$ or V_{IL} ; $I_{O} = -8 \text{ mA}$	2.3	1.9	_	_	V
		$V_{I} = V_{IH}$ or V_{IL} ; $I_{O} = -12 \text{ mA}$	2.7	2.2	-	-	V
		$V_{I} = V_{IH}$ or V_{IL} ; $I_{O} = -24$ mA	3.0	2.3	_	_	V
		$V_{I} = V_{IH} \text{ or } V_{IL}; I_{O} = -32 \text{ mA}$	4.5	3.8	-	-	V
ILI	input leakage current	V ₁ = 5.5 V or GND	3.6	_	±0.1	±5	μA
I _{off}	power OFF leakage current	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0	-	±0.1	±10	μA
I _{CC}	quiescent supply current	$V_{I} = V_{CC}$ or GND; $I_{O} = 0$	5.5	-	0.1	10	μA
ΔI_{CC}	additional quiescent supply current per input pin	$V_{I} = V_{CC} - 0.6 V; I_{O} = 0$	2.3 to 5.5	_	5	500	μA

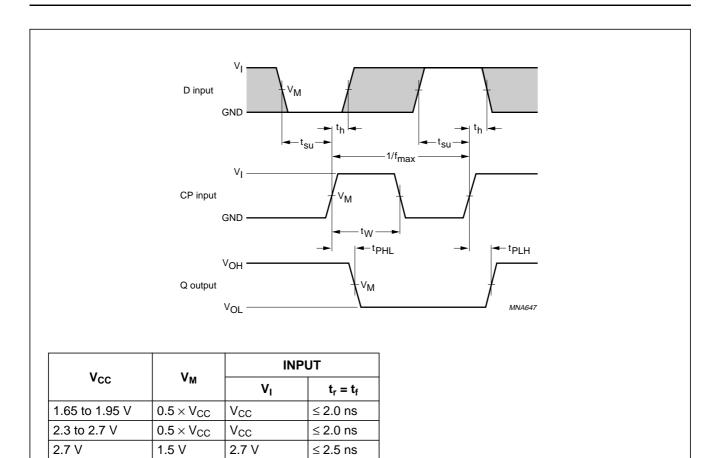
Note

1. All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

74LVC1G79


AC CHARACTERISTICS

GND = 0 V; $t_r = t_f \le 2.0$ ns; unless otherwise specified.


		TEST CON	DITIONS		T _{amb} (°C)	
SYMBOL	PARAMETER			–40 to +85			UNIT
		WAVEFORMS	V _{cc} (V)	MIN.	TYP.	MAX.	-
t _{PHL} /t _{PLH}	propagation delay CP to Q	see Figs 5 and 7	1.65 to 1.95	1.0	3.6	9.9	ns
			2.3 to 2.7	1.5	2.3	7.0	ns
			2.7	1.5	2.6	6.0	ns
			3.0 to 3.6	0.5	2.2	5.2	ns
			4.5 to 5.5	0.5	1.7	4.5	ns
t _{su}	set-up time D to CP	see Figs 6 and 7	1.65 to 1.95	3.0	1.4	_	ns
			2.3 to 2.7	2.5	0.9	_	ns
			2.7	2.5	0.9	_	ns
			3.0 to 3.6	2.0	0.6	_	ns
			4.5 to 5.5	2.0	0.6	-	ns
t _h	hold time D to CP	see Figs 6 and 7	1.65 to 1.95	0	-0.7	_	ns
			2.3 to 2.7	0	-0.4	_	ns
			2.7	0.5	-0.3	-	ns
			3.0 to 3.6	0.5	-0.3	_	ns
			4.5 to 5.5	0.5	-0.2	_	ns
t _W	clock pulse with HIGH or LOW	see Figs 6 and 7	1.65 to 1.95	3.0	1.1	-	ns
			2.3 to 2.7	2.5	0.7	_	ns
			2.7	2.5	0.6	_	ns
			3.0 to 3.6	2.5	0.6	-	ns
			4.5 to 5.5	2.0	0.5	-	ns
f _{max}	maximum clock pulse	see Figs 6 and 7	1.65 to 1.95	100	250	-	MHz
	frequency		2.3 to 2.7	150	300	-	MHz
			2.7	150	350	-	MHz
			3.0 to 3.6	150	450	-	MHz
			4.5 to 5.5	200	500	_	MHz

74LVC1G79

AC WAVEFORMS

74LVC1G79

The shaded areas indicate when the input is permitted to change for predictable output performance.

2.7 V

 V_{CC}

 V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.

1.5 V

 $0.5 \times V_{CC}$

3.0 to 3.6 V

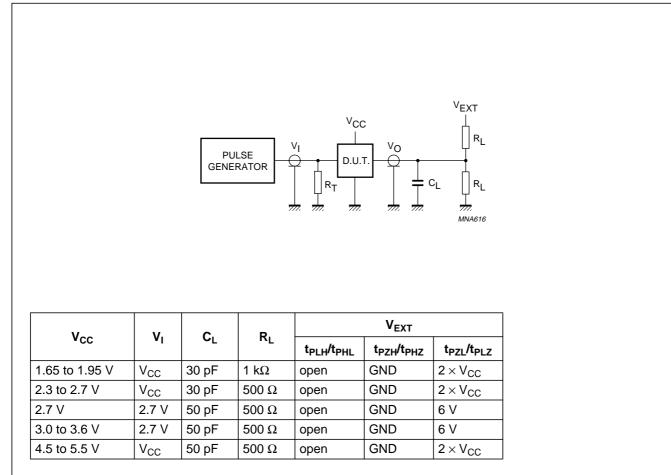

4.5 to 5.5 V

Fig.6 Clock (CP) to output (Q) propagation delays, clock pulse width, D to CP set-up times, the CP to D hold times and maximum clock pulse frequency.

≤ 2.5 ns

≤ 2.5 ns

74LVC1G79

Definitions for test circuit:

 R_L = Load resistor.

 C_{L} = Load capacitance including jig and probe capacitance.

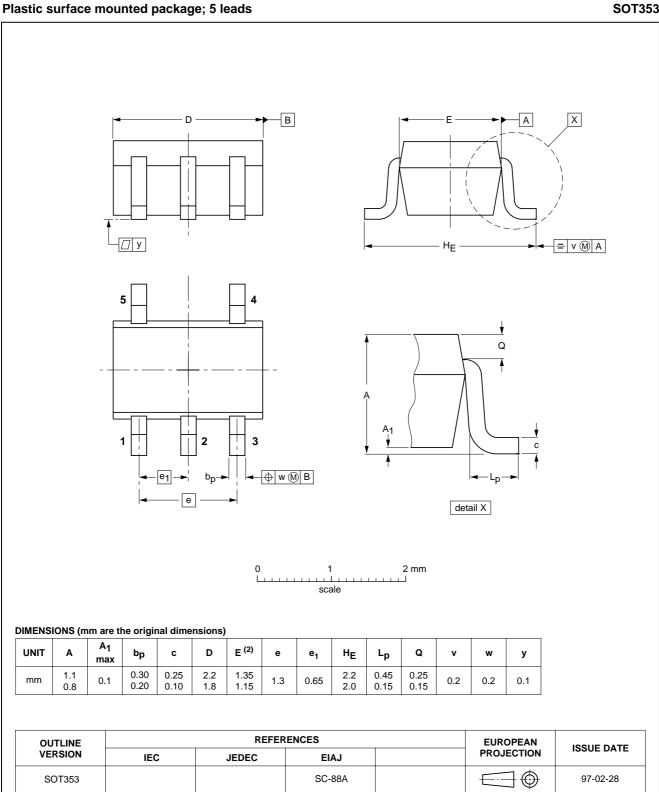

 R_{T} = Termination resistance should be equal to the output impedance Z_{o} of the pulse generator.

Fig.7 Load circuitry for switching times.

74LVC1G79

Single D-type flip-flop; positive-edge trigger

PACKAGE OUTLINE

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^\circ\text{C}.$

74LVC1G79

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD		
FACKAGE	WAVE	REFLOW ⁽¹⁾	
BGA, LFBGA, SQFP, TFBGA	not suitable	suitable	
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS	not suitable ⁽²⁾	suitable	
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable	
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable	

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

74LVC1G79

DATA SHEET STATUS

DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

74LVC1G79

NOTES

Philips Semiconductors – a worldwide company

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Argentina: see South America Tel. +31 40 27 82785, Fax. +31 40 27 88399 Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Tel. +64 9 849 4160, Fax. +64 9 849 7811 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248. Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 7 - 9 Rue du Mont Valérien, BP317, 92156 SURESNES Cedex, Tel. +33 1 4728 6600, Fax. +33 1 4728 6638 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Hungary: Philips Hungary Ltd., H-1119 Budapest, Fehervari ut 84/A, Tel: +36 1 382 1700, Fax: +36 1 382 1800 India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, JI. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838. Fax +39 039 203 6800 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

For all other countries apply to: Philips Semiconductors,

Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

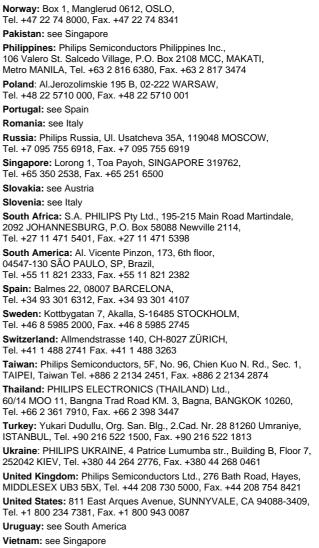
© Philips Electronics N.V. 2001

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613508/01/pp16

Date of release: 2001 Apr 04


Document order number: 9397 750 08066

SCA72

Let's make things better.

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 3341 299, Fax.+381 11 3342 553

Internet: http://www.semiconductors.philips.com